

Studying heavy-ion collisions exploiting high-pt particles at STAR

The 6th International Workshop of high-pt particles
Utrecht, Netherlands
4-7th April, 2011

Ahmed Hamed for the TAR Collaboration (Texas A&M University)

 \triangleright STAR probes 0.001 < x < 0.2 in PDF at $\sqrt{s} = 200 \text{ GeV}$

η coverage of STAR detectors

East

- At mid and forward η
 - * At low and high p_T
- Considerable capabilities for particle identifications
- * Reasonable efficiency for particle reconstructions

EMC

FGT

Contents

- * Lessons from high-p_T era before RHIC
- * Methods of exploiting high-pt particles and STAR capabilities
 - * Answered and unanswered questions from STAR high-p_T measurements

A particular focus of this talk is to discuss to what extent the high-p_T particles produced (STAR) can be taken as evidence for the RHIC paradigm of jet quenching "Parton traverses QDC medium (partonic matter) and loses energy".

High-pt particles: era before RHJC

Produced from jet fragmentation of partons scattered with large Q^2 Rates: framework of pQCD in terms of the asymptotically free pointlike parton

- o **DIS off nuclei and Drell-Yan process on nuclear target**: nPDF is **universal** and **factorization** holds up to NLO.
 - What about the FFs (Fragment distributions in jet energy)?
 in NN collisions and in AA collisions?

Methods of exploiting high-pt

Particle level:

 \triangleright Leading particle (spectra and R_{AA})

$$R_{AB} = \frac{dN_{AB}^h}{< N_{coll} >_f dN_{NN}^h}$$

> Fragment distributions in leading

particle momentum

(near and away-sides)

and I_{AA}

$$D = (1/N_{trig})dN/d(\Delta\phi) \quad I_{AA} = \frac{D_{AA}}{D_{NN}}$$

Parton level:

- ➤ Jet reconstructions <
- Direct γ

STAR capabilities at high-pt

Particle level:

> Spectra

Different particles : different coupling to the medium and different $\tau_{\rm form}$ (γ , π^{\pm} , π^{0} , K, ρ , η , ω , Φ , p, pbar, Λ , Ξ ..., J/ψ , Y,..., W^{\pm})

Correlations

- 1. Two particle correlations in Φ , and η \circ At mid η \circ At forward η
- 2. Multi particle correlations in Φ, η
- 3. Correlation w.r.t reaction plane

Parton level:

> Spectra and correlations for direct γ and jets

Answered and unanswered questions - STAR

STAR:124 papers of which 48 papers in high-pt for inclusive and different particles at different energy and collision systems.

Group I

- * Is AA collision an incoherent superposition of NN/NA collisions?
- * Does NA collisions resemble NN collisions?
- * What is the role of the precursor state, the proposed CGC, if it exists? Inclusive particles are sufficient to address these questions

Group II

- * Hadron suppression: Hadronic absorption and/or partonic energy loss?
- * What is the mechanism of energy loss (radiative/elastic)?
- * What is the functional form of energy loss (E,L,C_R,f)? Identified particles and access to parton level are needed to address these questions

The basic question

➤ Whether AA creates a medium long-lived and extend over sizable volume and reached the thermodynamics limit to have particular thermodynamic and transport properties.?!

Group I

* Is AA collision an incoherent superposition of NN/NA collisions?

$$E\frac{d^3\sigma}{dp^3}(p_T, A) = E\frac{d^3\sigma}{dp^3}(p_T, 1)A^{\alpha(p_T)}$$

* Does NA collisions resemble NN collisions?

* What is the role of the precursor state, the proposed CGC, if it exists?

Correlations in pseudorapidity

0.16

0.14

0.12

0.1

0.06

0.04

Au+Au central, ZYAM normalization

 $P_{t,trig}$ [GeV/c]

- \triangleright Ridge correlated with jet direction and independent of trigger p_T and $\Delta\eta$ within current uncertainties. Ridge mechanisms?
 - \triangleright AA collision is not simple incoherent superposition of NA collisions from $\Delta\eta$ dimension

Long range

Spectra at mid rapidity

- AA collision is not simple incoherent superposition of NN collisions, assuming MC Glauber.
 - ➤ Could it be initial state effect?
- ✓ But deviation from unity increases with multiplicity/centrality.

Spectra and correlations at mid rapidity

 \triangleright di-jet suppression at higher p_T ?

 $\pi/2$

 $\Delta \phi$ (radians)

Correlations at mid rapidity "higher pt"

Preprint: arXiv1102.2669

Di-jet trigger

trig1:
$$5 < p_T^{trig1} < 10 \, \mathrm{GeV/c}$$

trig2:
$$4 < p_T^{trig2} < p_T^{trig1}$$

(back-to-back,
$$|\phi_{trig1} - \phi_{trig2}| \le \pi \pm 0.2$$
)

assoc: 1.5 GeV/
$$c < p_T^{\rm assoc} < p_T^{\rm trig1}$$

200 GeV Au+Au (squares) and d+Au (circles)

Similar away and near sides for AuAu and dAu

✓ Are these tangential emission/non interacting jets "punch through"?

Correlations w.r.t reaction plane

Phys. Rev. Lett. 93 (2004) 252301

 v_2 at high p_T is finite positive! Jet quenching : energy loss dependence of path length

 \triangleright The measured value of elliptic flow at high p_T is larger than the possible value from surface emission scenario.

Spectra and correlations at forward rapidity

 π^0 spectra in pp and dAu collisions checked against pQCD and then R_{dAu} is obtained

 \triangleright Charged particles and π^0 are suppressed in the forward direction

Consistent with saturation at low x

-----> mono-jet

"qualitatively consistent with CGC"

Group I

Questions	Midη	Forwardη	Measurements	Remarks
Is AA collision an incoherent superposition of NN/NA collisions?	No	;	Spectra and two/multi particle correlations in η and Φ and correlations w.r.t reaction plane	Final state effect, surface bias emission?, inconsistency with v ₂ ? non- interacting jets?, ridge?
Does NA collisions resemble NN collisions?	Yes except for Cronin effect	No	Spectra and two particle correlations in η and Φ	Onset of saturation at forward rapidity
What is the role of the precursor state, the proposed CGC, if it exists?	5	Onset of saturation	Spectra and two particle correlations in Φ	Onset of saturation at forward rapidity, CGC?

Group II

★ Hadron suppression: Hadronic absorption and/or partonic energy loss?✓ Hadronic or partonic order?

* What is the mechanism of energy loss (radiative/elastic)?

✓ Heavy and light quarks

- * What is the functional form of energy loss (E,L,C_R,f) ?
 - ✓ Access to the underlying scale "partonic level"

Hadronic and/or partonic suppressions

All particle spectra in pp collisions checked against pQCD and then R_{AA} is obtained $R_{AA}(p+\bar{p}) \sim R_{AA}(K) \sim R_{AA}(\pi) \sim R_{AA}(\rho)$

Neither unique hadronic order, nor partonic order over the entire range, only quark number order in AuAu and dAu at intermediate p_T

✓ Different production mechanisms, different formation time for different particles.

Hadronic and/or partonic collectivity

✓ Hadronic order at low p_T and quark number order at intermediate p_T
 ➤ Scaling with quark number suggests partonic collectivity

✓ Light and s-quark have similar v_2 — pre-hadronic collectivity

Inelastic and/or elastic energy loss

- ✓ Unexpected level of suppression for non-photonic electrons, Collisional energy loss? Bottom contributions? Requires direct measurements for c- and b- hadrons
 - \triangleright J/ ψ yield is consistent with no suppression at high p_T

STAR is capable to do a lot more "Jaro's talk"

Functional form of energy loss

✓ Associated yields in p+p and Au+Au are well described by theoretical models.

o similar level and pattern of suppression

- o Effect of fluctuations in energy loss dominates over the effect of geometry?!
 - o Energy loss dependence of parton initial energy smeared out the expected differences?!

Functional form of energy loss

The energy loss dependence on path length, color factor, and parton initial energy is not observed within the covered kinematic range

$$> v_2^{\pi^0} \approx v_2^{ch} \approx 3*v_2^{\gamma_{dir}}$$

Is it reaction plane bias, possible path length dependence of energy loss, and/or fragmentation photon contributions?

Functional form of energy loss

- ➤ Jet cross section at mid rapidity is consistent with NLO pQCD over many orders of magnitude
- > Suggestive broadening of jets in AuAu collisions compared to jets in pp collisions

STAR is capable to do a lot more "Jan's talk"

Group II

Questions	Exp	Theory	Measurements	Remarks
Hadron suppression: Hadronic absorption and/or partonic energy loss?	.5	Partonic energy loss for light quark	Spectra and correlations w.r.t reaction plane for many identified hadrons with different quarks contents	Th: suppression is too large to be described by hadronic absorption for light quarks. Exp: Neither hadronic nor partonic hierarchy, scaling with quark number at intermediate PT
What is the mechanism of energy loss (radiative/elastic)?		?	Spectra, two particle correlations in Φ, and correlation w.r.t reaction plane for heavy quarks	Exp: Unexpected level of suppression for non-photonic electrons.
What is the functional form of energy loss (E,L,C _R ,f)?	5	E, ln(E), \sqrt{E} , L ² ,L,C _R ,f	Spectra and two particle correlations in Φ for direct photon spectra and jet-hadron correlation in Φ .	Exp: No strong dependence on E, L, C_R , f is observed

 $[\]mathbf{x}$ For two particle correlations in Φ , and correlation w.r.t reaction plane for heavy quarks and jet-hadron correlation in Φ see Jaro's and Jan's talks respectively.

Summary

 \triangleright Single hadron and di-jet analysis in NN, NA, and AA establish the final state effect in AA at mid η and the onset of saturation at forward η .

A particular focus of this talk was to discuss to what extent the high- p_T particles produced (STAR) can be taken as evidence for the RHIC paradigm of <u>jet quenching</u> "Parton traverses QDC medium (partonic matter) and loses energy".

Theory - experiment comparison seems to favor the partonic energy loss (light quarks) over the hadronic absorptions in partonic and/or hadronic matter.

The basic question

Whether AA creates a medium long-lived and extend over sizable volume and reached the thermodynamics limit to have particular thermodynamic and transport properties.?!

is awaiting future measurements of more evident results and